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The wide occurrence of unsaturated medium ring ethers in a 
variety of Laurencia species and in the organisms which feed on 
this alga has become a feature of marine natural products 
chemistry.1 The prototypical member of this family is undoubt
edly (+)-laurencin (1), which was isolated from Laurencia 
glandulifera by Irie and Masamune2 and was synthesized as the 
racemate in pioneering fashion by Masamune and co-workers 
some 17 years ago.3 In this communication we report the 
enantioselective synthesis4 of (+)-laurencin (1) in 26 steps from 
dimethyl (7?)-malate (2) using a Claisen rearrangement approach 
to the key lactone 7. Noteworthy steps are the reagent-controlled 
diastereoselective enolate oxidation, the carbon homologation 
sequence involving Tebbe methylenation of 7 and diastereose
lective intramolecular hydrosilation, the stereocontrolled intro
duction of the pentenynyl side chain, and the remarkably high-
yielding displacement of the secondary alcohol by bromide. 

Of the various approaches to eight-membered medium ring 
ethers,5 only the Overman6 route to laurenyne has effectively 
employed the cyclization of an acyclic precursor to make a natural 
product; other popular approaches have relied on methods for 
elaboration of eight-membered lactone precursors.7 

Selective reduction8 of dimethyl (J?)-malate (2) gave the diol 
3, which was protected as the acetonide 4 (Scheme I). DIBALH 
reduction of 4 followed by addition of vinylmagnesium bromide 
in the presence of cerium(III) chloride9 to the distilled aldehyde 
gave the required allylic alcohol 5 as a 1:1 mixture of diastereo-
isomers (70%). Acetonide removal and in situ silylation of the 
primary hydroxyl group afforded a monoprotected triol which 
served as a precursor for the Claisen rearrangement.10 Acetal 
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"(a) BH3-Me2S, NaBH4 (catalytic amount) (95%); (b) CH3C-
(OMe)=CH2 , PPTS (90%); (c) DIBALH, THF, -78 0C; (d) 
CH2=CHMgBr, CeCl3, -78 0C (73% from 4); (e) TsOH, MeOH, room 
temperature; (f) TBDPSCl, DMF, imidazole; (g) PhSeCH2C(OEt)2, 
Amberlite IR 120 resin (71% from 5); (h) NaIO4, NaHCO3, room 
temperature, MeOH-H2O; (i) DBU, w-xylene, reflux (73% from 6). 
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" (a) KHMDS, toluene, -78 0C, (+)-(2J?,8a5')-camphorsulfonylox-
aziridine, -78 °C, followed by CSA, -40 0C to room temperature (74%); 
(b) Me3SiCl, Et3N (91%); (c) Tebbe reagent, DMAP, -40 0C (71%); 
(d) TBAF, THF, 0 0C; (e) (HMe2Si)2NH, NH4Cl (catalytic amount), 
60 0C, (78% from 10); (0 Pt(DVS)2 (0.1 M in toluene, 2 mol %) THF, 
reflux, 16 h followed by EDTA-2Na-2H20-hexane and then KOH-H2O2 
(65%); (g) PhCH(OMe)2, PPTS; (h) DIBALH, CH2Cl2, -78 0C (58% 
from 12); (i) TsCl, DMAP, CH2Cl2; (j) Me2CuLi, C6H6/Et20 (l:l),-78 
0C (69% from 13). 

formation with phenylselenoacetaldehyde diethyl acetal gave the 
dioxan 6 as a mixture of diastereoisomers. Oxidation with sodium 
metaperiodate gave the selenoxide, which was then heated to 
reflux in w-xylene (0.01 M) in the presence of DBU to afford 
the lactone 7 in 73% yield. 

Formation of the enolate derived from 7 with potassium 
hexamethyldisilazide (KHMDS), followed by addition of 
(2/?,8aS)-camphorsulfonyloxaziridinen (-78 0C) and quenching 
with camphorsulfonic acid (CSA, -40 0C to room temperature) 
gave the hydroxylactone 8 as a single diastereoisomer (Scheme 
II).12 Our strategy for introduction of the ethyl side chain called 
for Tebbe methylenation13 of the lactone carbonyl group and 
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hydroxyl-directed intramolecular hydrosilation14 of the enol ether. 
Protection of 8, methylenation, and silyl group interchange 
afforded the enol ether 10 which was purified by flash chroma
tography on basic alumina. The key hydrosilation reaction was 
carried out by use of bis(l,3-divinyl-l,l,3,3-tetramethyldisilox-
ane)platinum(O) [Pt(DVS)2]15 (2 mol %) in toluene to afford the 
required diol 12 and its 2/3-hydroxymethyl epimer in a 3.5:1 ratio. 
The corresponding benzylidene acetal16 was reductively cleaved 
with DIBALH17 to give the differentially protected triol 13, which 
was converted into the ethyl-substituted derivative 14 by coupling 
of the tosylate with lithium dimethyl cuprate. 

Deprotection of the silyl ether 14 and Swern oxidation of the 
resulting primary alcohol yielded the aldehyde 15 in preparation 
for addition of the pentenynyl side chain (Scheme III). Addition 
0f(£)-LiCu(CH2CH=CHC=CSiMe3)2

18tothealdehydel5gave 
a 55:45 separable mixture of diastereoisomeric alcohols, the major 
isomer affording the acetate 16. The minor diastereoisomer could 
be recycled to the required isomer by an oxidation-reduction 
sequence.19 Debenzylation with boron trichloride-dimethyl 
sulfide complex20 in dichloromethane at room temperature 
unmasked the secondary alcohol 17,which was cleanly inverted 
to the bromo derivative 18 with DIPHOS-Br2 in remarkably 
high yield.21 Desilylation then yielded (+)-laurencin (1), mp 
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Cl2, 20 0C, (40% from 15); (e) BCl3-DMS, CH2Cl2, room temperature 
(76%); (f) Ph2PCH2CH2PPh2, Br2 (70%); (g) TBAF-HF, pH 4, -15 to 
-10 0C, 15 min (93%). 

69-70 0C, [a]25
D +69.0 (c 1.00, CHCl3), which was identical in 

all spectroscopic data (IR, 1H NMR, 13C NMR, MS) to those 
of the natural and synthetic material.22'23 
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